
Computing and Informatics, Vol. –, –, 1–20, V 2016-May-24

AN EFFICIENT STRING EDIT
SIMILARITY JOIN ALGORITHM

Karam Gouda†, Metwally Rashad∗

† Faculty of Computers & Informatics Benha University, Benha, Egypt
∗ Faculty of Information Technology, University of Pannonia, Hungary.
e-mail: karam.gouda@fci.bu.edu.eg, metwally.rashad@virt.uni-pannon.hu

Abstract. String similarity join is a basic and essential operation in many appli-
cations. In this paper, we investigate the problem of string similarity join with edit
distance constraints. A trie-based edit similarity join framework has been proposed
recently. The main advantage of existing trie-based algorithms is support for sim-
ilarity join on short strings. The main problem is when joining long and distant
strings. These methods generate and maintain lots of similar prefixes called active
nodes which need to be further removed in a subsequent pruning phase. With large
edit distance, the number of active nodes becomes quite large. In this paper, we
propose a new trie-based join algorithm called PreJoin, which improves upon cur-
rent trie-based join methods. It efficiently finds all similar string pairs using a novel
active-node generation method, which minimizes the number of generated active
nodes by applying the pruning heuristics early in the generation process. The per-
formance of PreJoin is scaled in two different ways: First, a dynamic reordering
of the trie index is used to accelerate the search for similar string pairs. Second,
a partitioning method of string space is used to improve performance on large edit
distance thresholds. Experiments show that our approach is highly efficient for pro-
cessing short as well as long strings, and outperforms the state-of-the-art trie-based
join approaches by a factor five.

Keywords: String data, edit distance, trie-based approaches, similarity join

Mathematics Subject Classification 2010: 68–P20

2 K. Gouda, M. Rashad

1 INTRODUCTION

In the modern society, string data are becoming ubiquitous, and its management
has taken on particular importance in the past few years. Similarity join of string
data has become an essential operation in many applications, including data inte-
gration [4], data cleaning [9], web page detection [8], record linkage [16], pattern
recognition [11], etc. It is also adopted in the industry solutions.

Given two string collections, string similarity join finds similar string pairs from
both collections. Many similarity functions have been proposed to quantify the
similarity among strings, such as Jaccard similarity, Cosine similarity and edit dis-
tance. In this paper, we study string similarity join with edit distance constraints
(abbreviated string edit similarity join [3]). Given two strings, their string edit
distance measures the minimum number of edit operations (insertion, deletion and
substitution) performed on one of them to get the other. Edit distance has two dis-
tinctive advantages over alternative distances or similarity measures: (a) it reflects
the ordering of tokens in the string; and (b) it allows non-trivial alignment. These
properties make edit distance a good measure in many application domains, e.g.,
to capture typographical errors for text documents, and to capture similarities for
Homologous proteins or genes.

Many of the existing algorithms to the string edit similarity join problem, such
as Part-Enum [1], All-Pairs-Ed [2], Ed-Join [18], Pass-Join [12] and MassJoin [5],
employ the filter-and-verify paradigm, where q-gram inverted indexes are used to
quickly filter out many of the unpromising string pairs and generate candidate pairs.
Then, these candidates are verified, i.e., whether each pair is within the edit thresh-
old, by a string edit distance algorithm. The q-gram based methods have the follow-
ing disadvantages. First, they are inefficient with short strings, since they cannot
select high-quality signatures (q-grams) for short strings; thus, they may generate
a large number of candidate pairs which need to be further verified. Second, they
cannot support dynamic data updates. Since the data updates change the weights
of signatures, the methods need to reselect signatures, rebuild indexes and rerun
their algorithms from scratch. Finally, they involve large index sizes as there could
be large numbers of signatures.

Recently, to address the above-mentioned problems, a trie-based edit similarity
join framework has been proposed [15, 6]. The idea at the heart of this approach is
based on the observation that similar strings should have similar prefixes. Thus, if
two different strings are not similar on a particular pair of their prefixes, they are not
similar strings. As many data strings have common prefixes, using the trie structure
to index data strings not only minimizes the index size but allows for efficient string
similarity join using prefix pruning. Several algorithms have been introduced to
traverse the trie index to find similar string pairs [15, 6]. While traversing the trie
index, these methods generate and maintain similar prefixes called active nodes. If
a similar prefix pair correspond to data strings, this pair is reported as an answer.
Although trie-based similarity join is free from the costly verification phase, the
major challenge facing current trie-based join methods is when joining long and

String Edit Similarity Join Algorithm 3

distant strings. With large edit distance thresholds, the number of active nodes
becomes quite large. For example, if we allow three edit errors, all the trie nodes
on the highest four levels will be active nodes. The situation will be even worse
for the applications where strings have large-sized alphabets; e.g., Unicode or CJK
characters [17].

To meet this challenge, current methods [15, 6] use many pruning techniques
such as length pruning, single-branch pruning and count pruning to minimize the
number of active nodes. Unfortunately, these pruning techniques are used in a
separate phase subsequent to the generation phase. The computation and space
overheads caused by these two phases makes the existing approaches inefficient for
processing large data sets with long strings and higher edit distance thresholds. In
this paper, we propose a new trie-based edit similarity join algorithm called PreJoin,
which minimizes the number of generated active nodes. To the best of our knowl-
edge, we are the first to address this problem. PreJoin uses preorder traversal
combined with a novel active node generation method. Instead of generating and
maintaining active nodes, and then refining them in a subsequent phase, the new
method encapsulates the previous pruning techniques to generate and maintain the
actual active nodes. Thus, the space required for maintaining active nodes is mini-
mized and the overhead of applying the pruning techniques in a subsequent phase is
removed. Moreover, PreJoin assumes that the active nodes of each trie node to be
available when it is visited. Thus, the generation method chooses to generate active
nodes of all children of a currently processed node at once, which reduces redundant
computations inherent to active nodes computation.

The performance of PreJoin is scaled in two different ways: First, we modify the
tree traversal in PreJoin to be dynamic preorder, that is, at each node, the next sub-
trie to be processed is determined according to an effective ordering methodology.
Second, the string space is partitioned in order to improve the performance on large
edit distance thresholds. The extended version of PreJoin is called PreJoin-Plus.
A preliminary idea of the work presented here is appeared as an abstract in [7]. The
work in the current paper has significantly extended the idea with respect to the
underlying methodology and the experimental evaluation.

To summarize, we make the following contributions:

1. We propose a new trie-based edit similarity join algorithm called PreJoin, which
improves upon current trie-based join methods. It efficiently finds all similar
string pairs using a new active-node set generation method.

2. We scale the performance of PreJoin in two different ways: First, a dynamic
reordering of the trie index is used to accelerate the search for similar string pairs.
Second, a partitioning method of string space is used to improve performance on
large edit distance thresholds. We call this extension PreJoin-Plus algorithm.

3. Experimental results show that our algorithms are highly efficient for processing
short as well as long strings, and outperform the state-of-the-art trie-based join
approaches.

4 K. Gouda, M. Rashad

The rest of the paper is organized as follows: Section 2 introduces preliminaries
such as problem statement and the working principle of trie-based similarity join.
Section 3 presents the basic PreJoin algorithm and the novel active nodes generation
method. Section 4 presents the scaling methodologies to PreJoin, such as the
dynamic reordering of the index and partitioning of the string space. Experimental
results are given in Section 5. Finally, Section 6 concludes the paper.

2 PRELIMINARIES

2.1 Problem statement

Let Σ be a finite alphabet of symbols σi (1 ≤ i ≤ |Σ|); each symbol is also called a
character. A string s is an ordered array of symbols drawn from Σ. We use |s| to
denote the length of s, and s[i] to denote the i-th character of s, and s[1..j] to denote
the prefix of s, i.e., a substring of s starting from its beginning character to its j-th
character. Each string s is also assigned an identifier sid. The edit distance between
two strings s1 and s2, denoted as ed(s1, s2), is the minimum number of single-
character edit operations, including insertion, deletion and substitution, needed to
transform s1 to s2, or vice versa. For example, the edit distance between s1 =
”Jim Gray” and s2 = ”Jim Grey” is 1, since s1 could be transformed to s2 with
a minimal of a substitution operation that replaces the character at position 7,
s1[7], with the new character e. The edit distance between two strings s1 and s2
can be computed in O(|s1||s2|) time and O(min(|s1|, |s2|)) space using the standard
dynamic programming [14].

Given two sets of strings R and S, a similarity join with edit distance threshold
τ (or string edit similarity join [3]) returns pairs of strings, one from each set, such
that their edit distance is less than τ , that is, string edit similarity join of R and
S returns {⟨r, s⟩ : ed(r, s) ≤ τ, r ∈ R, s ∈ S}. The best known edit distance
computation algorithm tests if ed(r, s) ≤ τ in O(τ ·min(|r|, |s|)) time [13]. In this
paper, for the ease of exposition, we focus on the self-join case, i.e., S = R.

Several algorithms have been introduced in the previous studies to solve the
string edit similarity join problem, such as Part-Enum [1], All-Pairs-Ed [2], ED-
Join [18], Pass-Join [12], MassJoin [5] and Trie-PathStack [15]. Trie-PathStack
and our approach PreJoin are trie-based methods, whereas the others are q-gram
based methods. Next, we introduce the working principles of the trie-based string
similarity join framework.

2.2 Trie-based string similarity join

In trie-based similarity join, a trie is used to index all strings in the dataset R. The
trie structure is a rooted tree, where each path from the root to a node represents
a (prefix of) string in R, and every node on the path has a label of a corresponding
character in that string. Thus, every trie leaf corresponds to a string in R. Figure

String Edit Similarity Join Algorithm 5

SID strings
s1 ba
s2 bag
s3 ebay
s4 bay
s4 kobe
s6 koby
s7 beagy

(a)

{0,1,9,13,14}

17

.....

ba

ea

e

a

ey

g y

y

k

o

{13,14,15}

{14,15,16,17}

{15,16,17}{15,16,17}

b

{4,11,12}

{2,10,11,12}

{1,9,10,11}

{0,1,5,9,10,13}

{1,2,5,6,9}
{1,2,3,4,5,6,11}

{2,3,4,12}

{2,3,4,7}

y

b

g

{2,5,6,7}

{3,6,7,8}

{7,8}

{0,1,2,5,9,10,13}

0

1

2

3
4

5

6

16
7

8

9

10

11

12

13

14

15

(b)

Fig. 1. (a) a sample string dataset; (b) a trie index. The set appearing next to each trie
node is its active node set at τ = 1.

1(b) shows the trie structure of the sample data set given in Figure 1(a). Numbers
on nodes are node identifiers.1 The node numbered 12, e.g., has the corresponding
character ”y”, and ”ebay” is its corresponding string.

Note that, strings with the same prefix share the same ancestor nodes on the
trie. Thus, if two different prefixes are not similar, the groups of strings sharing
these prefixes are not similar too. Based on this observation, a pruning technique
called dual subtrie pruning is proposed in [15, 6]. It works as follows. Given a trie
node n and an edit distance threshold τ , a trie node m is called an active node for
n if ed(pn, pm) ≤ τ , where pi is the prefix corresponding to the node i. Thus, if a
node m is not an active node for a node n, then the strings corresponding to the
descendants of m will not be similar to the strings corresponding to the descendants
of n. For example, consider the trie in Figure 1 and suppose τ = 1. Since the node
14 is not an active to the node 1, then all the strings with prefix ”ko”, i.e., strings
with sids s5 and s6 in the data set, are not similar to the strings with prefix ”b”,
i.e., strings with sids s2, s4 and s7.

In [15, 6], several algorithms have been proposed to traverse the trie index to

1 Hereafter, we use i and ni interchangeably as a node identifier.

6 K. Gouda, M. Rashad

find similar string pairs using dual subtrie pruning. Also, different pruning tech-
niques such as length pruning, single-branch pruning and count pruning have been
introduced to improve performance. Trie-based similarity join works as follows. For
each encountered node n in the trie traversal, its active-node set, denoted An, is
computed. If pn is a data string, then for every active node m ∈ An if pm is a
data string too then ⟨pn, pm⟩ is a similar string pair. Active-node sets are computed
incrementally using a method called ICAN [10] (Incrementally Computing Active
Nodes) as follows. Initially, the root of the trie represents an empty string ϵ, and its
corresponding active-node set includes all trie nodes m with depth no larger than τ .
Suppose the active-node set of a given node n, An, is computed. ICAN computes
the active-node set of each child of n from the active-node set An. Given a trie
node m, the time complexity of computing Am from its parent’s active-node set is
O(τ · |Am|), since each active node only can be computed from its ancestors within
τ steps.

Algorithm: Trie-Traverse(R, τ)

Input: R: a collection of strings;
τ : edit-distance threshold.

Output: P = {(s ∈ R, t ∈ R) : ed(s, t) ≤ τ}.
1. T = new trie(R);
2. Let r be the root id of the trie T ;
3. Ar= {m : a trie node such that |pm| ≤ τ};
4. for each child node of r, n do
5. P ∪= findSimilarPair(n, r,Ar);
6.Function findSimilarPair(c, p,Ap)
7. Ac = calcActiveNode(c,Ap);
8. Pruning(Ac);
9. if c is a leaf node then
10. Pc = outputSimilarPair(c,Ac);
11. for each child node of c, d do
12. Pc ∪= findSimilarPair(d, c,Ac);
12.Function outputSimilarPair(n,An)
13. for each leaf node l ∈ An(n ̸= l) do
14. Pn = {(n, l)};

Fig. 2. Trie-Traverse Algorithm

Trie-Traverse is a preorder traversal method introduced in [15] as a basic trie-
based similarity join algorithm. It first constructs a trie index for all strings in
R. It then traverses the trie in preorder, and computes the active-node set of a
node n, An, based on its parent’s active-node set. Preorder traversal guarantees

String Edit Similarity Join Algorithm 7

that, for each node, its parent’s active-node set is computed before its own active-
node set. The pseudo-code of Trie-Traverse is given in Figure 2. Since Trie-Traverse
visits each node in the trie T , hence, the time complexity of Trie-Traverse is given as
O(τ · |AT |), where |AT | =

∑
n∈T |An|. Figure 1 shows the active-node sets computed

in the preorder traversal when τ = 1. The arrows in the figure show the order in
this traversal.

The major challenge facing trie-based similarity join is when τ is large. The
higher the edit distance threshold τ , the larger the number of active nodes. More-
over, when R is large and consists of long strings, the corresponding trie becomes
very large. The main objective of this paper is to scale trie-based similarity join
on long and distant strings. While another traversal method called Trie-PathStack
has been introduced in [15, 6] to speed up trie-based join, in this paper, we present
a new method called PreJoin, which uses the preorder traversal combined with a
novel active-nodes generation method to optimize the number of active nodes.

3 PREJOIN ALGORITHM

In trie-based similarity join algorithms, active-node sets are generated in a separate
phase (see, e.g., line 7 in Figure 2) by the ICAN method [10]. A number of pruning
heuristics are then used in a subsequent phase in the algorithm (e.g., line 8 in
Figure 3) to optimize the size of each generated active-node set. The computation
and space overheads caused by these two phases are the main reasons of why the
current trie-based similarity join is not the best choice for processing long and distant
strings. Here, we devise a novel active nodes generation method, which minimizes
the number of generated active nodes by applying the pruning heuristics early in
the generation process. Therefore, the pruning phase is not required. This new
generation method scales trie-based join framework on long and distant strings.

Combining the preorder traversal of the trie index with the new active nodes
generation method, a new algorithm, called PreJoin, is developed. Figure 3 outlines
PreJoin algorithm. It works as follows. Given a dataset R, each string s ∈ R is
inserted into the trie index according to the order of stings in the dataset. Recall
that each trie leaf corresponds to a data string. Data strings which are contained in
other data strings are represented by intermediate trie nodes. Thus, in our model, a
trie node representing a data string is identified by the logical variable EOS (stands
for End Of String). PreJoin visits nodes in preorder as in Trie-Traverse. How-
ever, PreJoin differs from Trie-Traverse in that: first, in addition to constructing
the active-node set for the next child node to be visited as in Trie-Traverse, it also
constructs the active-node sets for all the child node siblings; thus reducing redun-
dant computations. Consequently, active-node set of each node will be available
when reaching that node in the traversal. Second, PreJoin does not follow the
fixed order imposed by the trie structure during traversal, it instead virtually re-
orders the children of each processing node to identify significant sub-tries to be
traversed next. Finally, PreJoin employs a novel active nodes generation method

8 K. Gouda, M. Rashad

that (1) avoids adding as many active nodes as possible into the active-node sets
during active nodes generation, and (2) generates active nodes of a given trie node
by investigating relatively deeper subtries rooted at the parent’s active-nodes.

Algorithm: PreJoin (R, τ)

Input: R: a collection of strings; τ : an edit-distance threshold.
Output: P = {(s ∈ R, t ∈ R) : ed(s, t) ≤ τ}.
1. T = new Trie(R);
2. Pre Traverse(root);
3.Procedure Pre Traverse(t)
4. impose an order on t children;
5. let CNt = {n1, . . . , nk} contain children of t in the given order;
5. for each ni do
7. if ni is EOS then Out Similar(ni, CNt,Ani

, i, τ);
8. if ni is a leaf then continue;
9. Gen ActiveNode(ni, CNt,Ani

, i, τ);
10. Pre Traverse(ni);
11.Function Gen ActiveNode(ni, CNt,Ani

, i, τ)
12. for each node m ∈ Ani

at distance d do
13. if nc

i == mc then Push down(ni,m, d, τ, 1);
14. else Push down(ni,m, d, τ, 0);

/* nj , j > i are also active nodes to ni with distance 1 */

15. for each nj, j > i do Push down(ni, nj, 1, τ, 0);

Fig. 3. PreJoin Algorithm

3.1 Novel Active Nodes Generation Method

3.1.1 Pruning Rules

The new active nodes generation method avoids adding as many active nodes as
possible into the active-node sets by enforcing the following rules during the gener-
ation process.

RULE I: The first rule is to exploit the symmetry property of the string edit
distance early in the generation. This property states that for any two strings s1 and
s2, ed(s1, s2) = ed(s2, s1). Note that a similar concept is used in Trie-PathStack.
But, it is used there in a subsequent pruning phase, not in the generation phase as
in PreJoin. There are two cases where we can apply the symmetry property.
Case 1: Suppose n is a trie node at level i which is currently under processing in

String Edit Similarity Join Algorithm 9

the traversal. There are two sub-cases: (1) Each ancestor node m of n, which is
at level i − j, j = 1 . . . τ , is an active node of n within the edit distance j, since
j deletion operations are required to transform the corresponding string of n, pn,
into the corresponding string of m, pm. (2) Each descendant node m of n, which is
at level i + j, j = 1 . . . τ , is an active node of n within the edit distance j, since j
insertion operations are required to transform the corresponding string of n, pn, into
the corresponding string of m, pm. Based on the symmetry property, our generation
method does not insert any ancestor or descendant active node m of n into An.
Nevertheless, when n is of type EOS, the function Out-Similar (Line 7, Figure 3)
searches for descendants m of type EOS which are at distance τ from n, and then
outputs the strings corresponding to n and m as similar pairs. Note that Out-
Similar does not handle ancestor active nodes because of the symmetry property.
As an example, although the trie nodes n1, n2, n3, n4 in Figure 1(b) are active to
the node n2 and included in An2 by Trie-Traverse algorithm, they are not inserted
into An2 by PreJoin according to our generation method (Figure 4). However, the
similar pairs (s1, s2) and (s1, s4) will be output by the function Out-Similar when
n2 is accessed.

{}

17

.....

ba

ea

e

a

ey

g y

y

k

o {}

{}

{}{}

b

{}

{}

{}

{}

{}

{9}{11}

{12}{7}

y

b

g

{}

{}

{}

{}

0

1

2

3 4

5

6

16
7

8

9

10

11

12

13

14

15

Fig. 4. Pre-order traversal plus active-node set generation in PreJoin, (τ = 1).

Case 2: Also based on the symmetry property, our method does not allow an
already traversed node to be active for n – the current node to be processed. For
example, suppose that n13 of Figure 1(b) is the currently processing node. The
active-node set An13 does not include the nodes n1 and n9, since they are already
processed. However, to guarantee completeness, the function Out-Similar will also
be responsible of dealing with this case as follows. Suppose n is the trie node
currently under processing in the traversal, and is of type EOS. For each active
node m ∈ An at distance d from n, Out-Similar searches in the hight τ − d subtrie
rooted at m for any node of type EOS to output. It also searches the hight τ − 1

10 K. Gouda, M. Rashad

subtrie2 rooted at each n’s sibling for EOS nodes to output. For example, let n2

(Figure 4) be the current processing node. Since it is of type EOS, the subtries
rooted at n5 and n11 are processed by Out-Similar.

RULE II: The second rule taken by the generation method is that: in the pro-
cess of generating the active-node set An of a node n from its parent’s active-node
set, the siblings of n are not inserted into An even though those siblings are active
nodes of n. 3 Nevertheless, later on, when n becomes the current node to be pro-
cessed, the method considers those siblings as active nodes and the subtrie rooted
at each sibling will be investigated (Line 15, Figure 3). As an example, using our
method, the trie nodes n9 and n13 in Figure 4 are not inserted into An1 . But later
on, when creating active-node sets of n1’s children, the subtries rooted at n9 and
n13 are investigated, taking into account they are at edit distance one of n1.

Applying the previous pruning rules minimizes the number of generated active
nodes. Figure 4 shows the active nodes generated by PreJoin when τ = 1 of the
sample dataset given in Figure 1(a). Comparing these against the ones generated by
Trie-Traverse (Figure 1(b)) - a total of 4 active nodes instead of 76 active nodes with
Trie-Traverse. Thus, the space used for holding active nodes in this simple example
is an order of magnitude smaller than that of previous algorithms. Reducing the
memory required to hold active nodes from the beginning would allow PreJoin to
cope with larger τ . Below, we show how the new generation method computes
active-node sets by investigating relatively larger subtries which enables PreJoin

to deal with long strings. Moreover, since PreJoin assumes that the active-node
set of a node to be available when it is visited, the generation method chooses to
generate active-node sets of all children of a currently visited node at once. Thus,
each subtrie is searched only once, removing most of the duplicated computations.
Hence, PreJoin is capable of dealing with long and distant strings efficiently.

3.1.2 Active nodes Construction

First, let nc be the character stored at the node n. The active nodes computation
is outlined in PreJoin under the function Gen ActiveNode (Figure 3, lines 11-15).
Suppose n is the currently processing node in PreJoin. PreJoin assumes that
An is already available. To generate the active-node sets of the children of n, the
generation method works as follows. For each active node m ∈ An, and at distance
d ≤ τ from n, the sub-trie rooted at m is searched. The sub-tries rooted at the
unprocessed siblings of n are also searched, since they are active nodes of n at
distance d = 1, but they are not included in An according to the second pruning
rule. The trie level at which the search can reach in each sub-trie depends on the

2 Recall, each sibling of n is at distance 1 from n.
3 Any two siblings are within edit distance one because one substitution operation is

required to transform the corresponding string of one sibling into the corresponding string
of another.

String Edit Similarity Join Algorithm 11

characters nc and mc. We have two cases: (1) mc differs from nc. In this case, the
search can reach up to the level lm + (τ − d) + 2, where lm is the trie level of the
node m; and (2) mc matches nc. Here, we can reach up to the level lm+(τ − d)+ 1.
Figure 5 illustrates these two cases. Next, we show how to search the sub-tries and
generate new active nodes.

..........

... ...

n

n n

A = {(m,d)..}
m

m

m

m

t
m

...........

.......

j

j

k1

n

C

C

b

a

C

a

a

y C x

a

C

C

b

..............

..............

Fig. 5. Computing active-node sets of the children of n.

Considering the active node m: The relation of the active node m to the children
of n is determined based on whether mc matches nc or not. First, suppose that mc

matches nc. The node m will be at distance d+1 from each child ni of n if either mc

matches nc
i or not. This is because d edit operations are required to transform pm

to pn and another deleting operation is required for nc
i . Second, let mc differ from

nc. The node m will be at distance d+ 1 from each child ni of n if mc differs from
nc
i , since d edit operations are required to transform pm to pn and another deleting

operation is required for nc
i . Otherwise, if mc matches nc

i , the node m will remain at
distance d from ni, since the substitution operation between mc and nc is replaced
by an insertion operation of nc while transforming pni

into pm.

Considering the descendants of the active node m: A descendant mj of m positioned
at level lm+ l, l ≤ τ−d, is at distance d+ l from n and from each child ni of n if each
character on the path from m to mj does not match both nc and nc

i . It is because
in order to first transform pn to pmj

, we need d edit operations to transform pm to
pn and extra l insertion operations are required for the path characters. Second, to
transform pni

to pmj
, we need one less character insertions than in the previous case,

and one more operation is required to substitute nc
i with mc

j. If m
c
j is the only path

character that matches either nc or nc
i , then mj is at distance d+l−1 from n or from

ni, respectively. Finally, If mc matches nc, the descendant mj is at distance d + l
from n despite the relation between nc and the path characters other than mc, and
will be at distance d+ l − 1 from each child ni of n if there exists a path character
matching nc

i ; otherwise, if there is no path character matching nc
i , mj becomes at

distance d+ l from ni.

12 K. Gouda, M. Rashad

The generation method searches the sub-tries by taking the previous considera-
tions into account while iterating through the depth value l; and when a descendant
mj of m becomes an active node to n, the sub-trie rooted at mj needs to be further
processed. Similar to ICAN, the method also keeps the minimum distance of each
generated active node, that is, whenever we add a node mj with distance d1 to the
active node set, if mj is already there with distance d2, we always keep the smaller
distance.

Example Consider the trie in Figure 4, and let τ = 1. Suppose n1 is the currently
processing node in PreJoin. An1 must be available. According to rules I and II,
An1 is empty. Note that n9 and n13 are at distance 1 but they are not included in
An1 . Thus, the subtries rooted at n9 and n13 will be searched to compute An2 and
An5 . Considering n9: n9 is at distances 1 and 2 from n5 and n2, respectively, since
nc
9 matches nc

5 and differs from nc
2. Since τ = 1, n9 is included in An5 but not in

An2 . Considering descendants of n9: n10 is at distance 2 from n5 and n2, since nc
10

differs from both nc
2 and nc

5. Since τ = 1, n10 is not included in An2 and An5 . Since
nc
10 matches nc

1, n10 is an active node of n1 with distance 1. Then the subtrie rooted
at n10 must be processed. n11 is at distance 1 and 2 from n2 and n5, respectively,
since nc

11 matches nc
2 and differs from nc

5. Since τ = 1, n11 is included in An2 but
not in An5 . Similarly the subtrie rooted at n13 can be searched.

4 SCALING PREJOIN

To improve the performance of PreJoin, it is scaled in two different ways. First, a
dynamic re-ordering of the trie index is used to accelerate the search for similar string
pairs. Second, a partitioning method of string space is used to improve performance
on large edit distance thresholds.

4.1 Dynamic re-ordering

In this subsection we discuss the various ways to dynamically choose nodes to visit
in the preorder traversal of the trie index in order to boost the search for similar
string pairs. Our approach is not to follow the rigid structure of the trie, which is
susceptible to the order of strings in the dataset. Alternatively, in our approach, at
each traversing trie node, the next node to be visited, or subtrie to be processed, is
determined according to one of the following three ordering strategies. Please note
that this ordering is virtual, that is, it does not affect the original structure of the
trie.

The first ordering method is based on the size of the subtrie rooted at each child
of an already traversing node, where subtrie size is taken as the number of strings
that belong to it. Here, we explore subtries in the ascending order of their size. To
do so, we maintain a variable at each trie node to count how many data strings go

String Edit Similarity Join Algorithm 13

through it, that is, the number of strings that this node is a prefix to. The second
ordering method is based on the fan-out value of each child of a traversing node. We
explore subtries in the ascending order of this value, that is, a child with the smallest
fan-out will be visited first. The third ordering method is based on the depth of the
subtrie rooted at each child of a traversing node, where subtrie depth is the length
of the maximum string in the subtrie. Here, we explore subtries in the ascending
order of their depth. To do so, we maintain a variable at each trie node to hold the
length of the longest string passing through this node. We have applied the above
ordering strategies in our approach, and carried out many experiments to asses the
effect of each ordering method on the overall performance of PreJoin. Experiments
carried out in Section 5 show that the third ordering method is more suitable than
others.

4.2 Partitioning string space

When the edit distance threshold τ gets large, it becomes expensive for PreJoin

to get the similar string pairs, since the size of the active-node set of each trie
node increases. To address this problem, we improve PreJoin, and call the new
version PreJoin-Plus. PreJoin-Plus is based on an idea from [3]. Consider a
string r = r1r2 . . . r|r| . We use L(r) = r1r2 . . . r |r|

2

to denote the left half of r and

R(r) = r |r|
2
+1

. . . r|r| to denote the right half of r. It is observed that if a string r is

similar to a string s within τ , then at least one of the following conditions holds: (1)
L(r) is similar to a prefix of s within ⌊ τ

2
⌋; (2) R(r) is similar to a suffix of s within

⌊ τ
2
⌋. For example, consider a string r = ”avataresha”, its left half L(r) = ”avata”

and its right half R(r) = ”resha”. Given a string s = ”vatarts”, as r is similar to s
within τ=4, we can see the first condition holds, that is, L(r) is similar to the prefix
”vat” of s within ⌊4

2
⌋ = 2.

PreJoin-Plus is illustrated as follows. Given a string collection S and edit
threshold τ , it first constructs a new string set L(S) that consists of the left half of
each string in S. Then, we run PreJoin on L(S) and S with edit distance threshold
⌊ τ
2
⌋. For a string L(r) in L(S), to find all the strings in S whose prefix is similar to

L(r), we traverse the descendants of each active node of node L(r) and find the leaf
nodes in S. Clearly, these leaf nodes have a prefix that is similar to L(r). Similarly,
if we reverse the strings in S, we can get all the string pairs ⟨r, s⟩ ∈ S×S such that
the right half R(r) is similar to a suffix of s within ⌊ τ

2
⌋. We verify the candidate

pairs generated from the two cases and obtain final results.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of PreJoin on real data sets. PreJoin
is implemented in standard C++ with STL library support and compiled with GNU
GCC. Experiments were run on a PC with Intel(R) Core(TM) 2 Duo 2.66GHz CPU
and 4GB memory running Linux.

14 K. Gouda, M. Rashad

Datasets: Three real datasets are used in experiments. (1) DBLP Author4. Only
author names are extracted from DBLP dataset. (2) DBLP Author+Title. Each
string is a concatenation of author names and title of a publication. (3) AOL Query
Log5. Table 1 gives the detailed information of each data set and its abbreviated
name that will be used afterwards. It shows the average, max and min lengths of
strings in the data sets. DBLP Author is an example of data set with short strings,
DBLP Author+Title is a data set with long strings, and the Query Log is a set of
query logs. Note that these datasets are the same as those used in [15].

Table 1. Datasets statistics

Data sets avg − len max− len min− len |
∑

|

DBLP Author (author) 12.82 46 4 37
AOL Query Log (query) 20.94 500 1 37
DBLP Authors+title (dblp) 104.78 1.743 10 37

5.1 Evaluation of dynamic re-ordering

In this set of experiments we evaluate the dynamic re-ordering technique associated
with PreJoin algorithm. Figure 6 shows the comparison of running time between
PreJoin with ordering 6 and PreJoin without ordering on different datasets and at
edit distance threshold τ = 3.

These experiments were performed on data subsets of size up to 200k strings.
Figure 6 reveals that PreJoin with ordering beats PreJoin without ordering. For
instance, at dataset size 200k, on author dataset, Figure 6(a) shows that PreJoin
without ordering takes 70.707 seconds, while after ordering it takes 60.259 seconds.
On query dataset, Figure 6(b) shows that PreJoin without ordering spends 98.817
seconds, while after ordering it spends 80.651 seconds. Also on dblp dataset, Figure
6(c) shows that PreJoin without ordering spends 47.556 seconds, while after order-
ing finishes within 35.876 seconds. We conclude that for small-size data subsets,
reordering can save up to 25% of time.

5.2 Comparison with trie-based join algorithms

Here, we compare PreJoin algorithm with Trie-Travese algorithm and the state-of-
the-art algorithm Trie-PathStack at different τ . The executables for Trie-Travese
and Trie-PathStack were obtained from their author [15].

4 http://www.informatik.unitrier.de/ ley/db
5 http://www.gregsadetsky.com/aol-data/
6 We use the third ordering method (see Section 4.2) in these experiments since it shows

the best performance among other ordering methods.

String Edit Similarity Join Algorithm 15

0.1

1

10

100

1000

5 10 20 50 100 200

author strings (Size in K)

T
im

e
 (

S
e

c
o

n
d

s
)

PreJoin with ordering

PreJoin without ordering

(a) author dataset

0.1

1

10

100

1000

10 20 50 100 200

query strings (Size in K)

T
im

e
 (

S
e

c
o

n
d

s
)

PreJoin with ordering

PreJoin without ordering

(b) query dataset

0.1

1

10

100

1000

10 20 50 100 200

#dblp strings(Size in K)

T
im

e
 (

S
e

c
o

n
d

s
)

PreJoin with ordering

PreJoin without ordering

(c) dblp dataset

Fig. 6. Comparison of running time of PreJoin with and without ordering at τ = 3.

Figure 7 shows the results for the three datasets at different τ = 2-3, respec-
tively. Note that we have two sub-figures for each dataset arranged based on τ .
Each sub-figure plots the performance results with fixed τ and different subsets
of the original dataset. Different subsets are used to show the scalability on the
dataset size, whereas a sub-figure is used for each τ to show the scalability when τ
increases. On the author dataset, a dataset characterized by short strings, Figure
7 shows that PreJoin performs the best. It outperforms Trie-PathStack, and the
performance gap increases with larger τ and larger subsets. The performance gap
between PreJoin and Trie-Traverse is relatively large, especially at τ ≥ 2. On the
dblp dataset, a dataset characterized by long strings, PreJoin significantly outper-
forms Trie-Traverse by more than one order of magnitude, especially at τ ≥ 2. Also,
the performance gap between PreJoin and Trie-PathStack is monotonically increas-
ing with both τ and dataset size; it outperforms Trie-PathStack by factor five when
τ=3 and the subset size is large.

16 K. Gouda, M. Rashad

 0.1

 1

 10

 100

 5 10 20 50 100 200

Ti
m

e(
se

co
nd

)

author strings

Pre-Join
Trie-PathStack

Trie-Traverse

(a) author dataset: τ = 2

 0.1

 1

 10

 100

 1000

 5 10 20 50 100 200

Ti
m

e(
se

co
nd

)

author strings

Pre-Join
Trie-PathStack

Trie-Traverse

(b) author dataset: τ = 3

 0.1

 1

 10

 100

 10 20 50 100 200

Ti
m

e(
se

co
nd

)

query strings

Pre-Join
Trie-PathStack

Trie-Traverse

(c) query dataset: τ = 2

 1

 10

 100

 1000

 10 20 50 100 200

Ti
m

e(
se

co
nd

)

query strings

Pre-Join
Trie-PathStack

Trie-Traverse

(d) query dataset: τ = 3

 0.1

 1

 10

 100

 10 20 50 100 200

Ti
m

e(
se

co
nd

)

dblp strings

Pre-Join
Trie-PathStack

Trie-Traverse

(e) dblp dataset: τ = 2

 1

 10

 100

 1000

 10 20 50 100 200

Ti
m

e(
se

co
nd

)

dblp strings

Pre-Join
Trie-PathStack

Trie-Traverse

(f) dblp dataset: τ = 3

Fig. 7. Comparative Performance: PreJoin, Trie-PathStack and Trie-Traverse on different
dataset sizes (#strings in K).

5.3 Comparison with q-gram based algorithms

In this set of experiments, we compare PreJoin and PreJoin-Plus against the
state-of-the-art q-gram based algorithm Ed-Join [8] on author and query datasets
at different τ . Ed-Join generates (|s| ·q+1) q-grams for each string s and selects the
first (q · τ +1) grams as gram prefix according to a predefined ordering on all grams.
Those string pairs that do not share any gram in the constituted prefix length

String Edit Similarity Join Algorithm 17

will be filtered and the survived string pairs will be verified by the edit distance
computation. Ed-Join also uses Location-based and content-based mismatching q-
gram for efficient filtering. Location-based filtering decreases the number of grams
required in the prefix of each string, and content-based filtering reduces the amount
of edit distance computation. As the performance of gram-based algorithms is highly
dependent on the q parameter, we ran Ed-Join with different values of q. Figure 8
depicts the results.

1

10

100

1000

Edit Distance Threshold = 2

Ti
m

e
(S

ec
on

d)

PreJoin
PreJoin-Plus
Ed-Join(q=2)
Ed-Join(q=3)
Ed-Join(q=4)

(a) author dataset

1

10

100

1000

Edit Distance Threshold = 3

Ti
m

e
(S

ec
on

d)

PreJoin
PreJoin-Plus
Ed-Join(q=2)
Ed-Join(q=3)
Ed-Join(q=4)

(b) author dataset

1

10

100

1000

Edit Distance Threshold = 2

Ti
m

e
(S

ec
on

d)

PreJoin
PreJoin-Plus
Ed-Join(q=2)
Ed-Join(q=3)
Ed-Join(q=4)

(c) query dataset

1

10

100

1000

 Edit Distance Threshold = 3

Ti
m

e
(S

ec
on

d)

PreJoin
PreJoin-Plus
Ed-Join(q=2)
Ed-Join(q=3)
Ed-Join(q=4)

(d) query dataset

Fig. 8. Comparison of running time with q-gram based algorithms at different τ .

Figure 8 shows that PreJoin outperforms Ed-Join algorithm on author dataset.
It is about 6 times faster than Ed-Join(q = 2) at τ = 2 (Figure 8 (a)), and is about
3 times faster than Ed-Join(q = 3) at τ = 3 (Figure 8 (b)). On query dataset,
PreJoin also outperforms Ed-Join algorithm at τ = 2 (Figure 8 (c)). At τ = 3,
(Figure 8 (d)), we find that Ed-Join is better than PreJoin. PreJoin-Plus, on the
other hand, still outperforms Ed-Join for this threshold τ = 3. PreJoin-Plus takes
22.106 seconds while Ed-Join(q = 4) spends 100.556 seconds. In summary, we can
say that our algorithms are always better than Ed-Join algorithm on author and
query datasets at different τ .

18 K. Gouda, M. Rashad

1

10

100

1000

2 3
Edit-Distance Threshold

Ti
m

e
(S

ec
on

ds
)

PreJoin
PreJoin-Plus
Trie-PathStack
Bi-Trie-PathStack

(a) author dataset

1

10

100

1000

2 3
Edit-Distance Threshold

Ti
m

e
(S

ec
on

ds
)

PreJoin
PreJoin-Plus
Trie-PathStack
Bi-Trie-PathStack

(b) query dataset

1

10

100

1000

2 3
Edit- Distance Threshold

Ti
m

e
(S

ec
on

ds
)

PreJoin
PreJoin-Plus
Trie-PathStack
Bi-Trie-PathStack

(c) dblp dataset

Fig. 9. Comparative Performance: PreJoin, PreJoin-Plus, Trie-PathStack and Bi-Trie-
PathStack at τ = 2−−3.

5.4 Evaluation of PreJoin-Plus algorithm

In these experiments, we compare the efficiency of PreJoin and PreJoin-Plus with
Trie-PathStack and Bi-Trie-PathStack. We ran all algorithms on author, query and
dblp datasets by varying τ . Figure 9 shows the results at τ = 2-3. We can see
that on author dataset, Figure 9 (a), PreJoin is faster than PreJoin-Plus at τ
= 2. For instance, it takes 7.4 seconds while PreJoin-Plus spends 10.36 seconds.
It also performs better than Trie-PathStack, and is about 4 times faster than Bi-
Trie-PathStack. At τ = 3, PreJoin-Plus outperforms PreJoin, Trie-PathStack and
Bi-Trie-PathStack. For example, Figure 9 (b) shows that PreJoin-Plus is about 3
times faster than PreJoin on query dataset. For instance, it takes 28.106 seconds
while PreJoin takes 98.817 seconds; it also performs better than Bi-Trie-PathStack
and is about 6 times faster than Trie-PathStack. Figure 9 (c) shows the efficiency
of PreJoin-Plus on dblp dataset. It shows the performance at τ = 3. In this
subfigure, PreJoin-Plus is about 3 times faster than PreJoin, and is also better
than Bi-Tri-PathStack. It is about 21 times faster than Trie-PathStack.

When τ gets larger, e.g., τ > 3, PreJoin-Plus increases efficiency compared to
Trie-PathStack and Bi-Trie-PathStack. We compared the running time of the three
algorithms on dblp dataset, by increasing τ = 4-7, respectively. Figure 10 (a) shows

String Edit Similarity Join Algorithm 19

that PreJoin-Plus is better than Bi-Trie-PathStack, and is about 17 times faster
than Trie-PathStack at τ = 4. Figure 10 (d) also shows that PreJoin-Plus is more
efficient. It takes 959.645 seconds while Bi-Trie-PathStack spends 1070 seconds at
200K strings, when τ = 7. PreJoin-Plus is also about 15 times faster than Trie-
PathStack. In summary, PreJoin-Plus is always better than Bi-Trie-PathStack
and Trie-PathStack when edit distance becomes large on datasets with long strings.

 1

 10

 100

 1000

 10000

10 20 50 100 200

T
im

e(
se

co
nd

)

dblp strings

PreJoin-Plus
Bi-Trie-PathStack

Trie-PathStack

(a) dblp: τ = 4

 1

 10

 100

 1000

 10000

10 20 50 100 200

T
im

e(
se

co
nd

)

dblp strings

PreJoin-Plus
Bi-Trie-PathStack

Trie-PathStack

(b) dblp: τ = 5

 1

 10

 100

 1000

 10000

10 20 50 100 200

T
im

e(
se

co
nd

)

dblp strings

PreJoin-Plus
Bi-Trie-PathStack

Trie-PathStack

(c) dblp: τ = 6

 10

 100

 1000

 10000

 100000

10 20 50 100 200

T
im

e(
se

co
nd

)

dblp strings

PreJoin-Plus
Bi-Trie-PathStack

Trie-PathStack

(d) dblp: τ = 7

Fig. 10. Comparative Performance: PreJoin-Plus, Trie-PathStack and Bi-Trie-PathStack
on dblp datasets for τ = 4-7(# String in K).

6 CONCLUSION

In this paper, we studied the problem of trie-based string similarity join with edit
distance constraints. We proposed a new trie-based join algorithm called PreJoin,
which improves upon current trie-based join methods. It efficiently finds all similar
string pairs using a new active-node set generation method. To support large edit
distance thresholds, PreJoin algorithm is improved by dynamically reordering the
search space and partitioning of the string space. Experiments show that our ap-
proach outperforms state-of-the-art methods on datasets with short as well as long
strings, even with large edit distance thresholds.

20 K. Gouda, M. Rashad

REFERENCES

[1] Arasu, A.— Ganti, V.— Kaushik, R.: Efficient exact set similarity joins. In:
VLDB, 2006, pp. 918–929.

[2] Bayardo, R.— Ma, Y.— Srikant, R.: Scaling up all pairs similarity search. In:
WWW, 2007, pp. 131–140.

[3] Chaudhuri, S.— Ganti, V.— Kaushik, R.: A primitive operator for similarity
joins in data cleaning. In: ICDE, 2006, pp. 5–16.

[4] Dong, X.— Halevy, Y.A.— Yu, C.: Data integration with uncertainty. In:
VLDB, 2007, pp. 687–698.

[5] Feng, J.— Li, G.— Hao, S.— Wang, J.— Feng, J.— Li, W.S.: Massjoin:
A mapreduce-based method for scalable string similarity joins. In: ICDE, 2014, pp.
340–351.

[6] Feng, J.— Wang, J.— Li, G.: Trie-join: a trie-based method for efficient string
similarity joins. VLDB J., Vol. 21, 2012, No. 4, pp. 437–461.

[7] Gouda, K.— Rashad, M.: Prejoin: An efficient trie-based string similarity join
algorithm. In: INFOS (2012).

[8] Henzinger, M.: Finding near-duplicate web pages: a large-scale evaluation of algo-
rithms. In: SIGIR, 2006, pp. 284–291.

[9] Hernandez, M.— Stolfo, S.: Real-world data is dirty: data cleansing and the
merge/purge problem. Data Mining and Knowledge Discovery, Vol. 4, 1998, No. 1,
pp. 9–37.

[10] Ji, S., Li, G., Li, C., Feng, J.: Efficient interactive fuzzy keyword search. In:
WWW, 2009, pp. 433–439.

[11] Jordan, M.— Kleinberg, J.— Scholkopf, B.: Pattern recognition and machine
learning (information science and statistics). In Springer-Verlag New York, Inc. (2006)

[12] Li, G.— Deng, D.— Feng, J.: A partition-based method for string similarity joins
with edit-distance constraints. ACM Trans. Database Syst. Vol. 38, 2013, No. 2, pp.
437–461.

[13] Ukkonen, E.: Algorithms for approximate string matching. Information and Con-
trol, Vol. 64, 1985, No. 1-3, pp. 100–118.

[14] Wagner, R.— Fischer, M.: The string-to-string correction problem. J. ACM, Vol.
21, 1974, No. 1, pp. 168–173.

[15] Wang, J.— Li, G.— Feng, J.: Trie-join: Efficient trie-based string similarity joins
with edit-distance constraints. PVLDB, Vol. 3, 2010, No. 1, pp. 1219–1230.

[16] Winkler, W.: The state of record linkage and current research problems. Technical
report, Statistical Research Division, U.S. Census Bureau

[17] Xiao, C.— Qin, J.— Wang, W.— Ishikawa, Y.— Tsuda, K.— Sadakane,
K.: Efficient error-tolerant query autocopletion. PVLDB, Vol. 6, 2013, No. 6, pp.
373–384.

[18] Xiao, C.— Wang, W.— Lin, X.: Ed-join: an efficient algorithm for similarity
joins with edit distance constraints. In: VLDB, 2008, pp. 933–944.

